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LETTER TO THE EDITOR 

Hyperbolic cantori have dimension zero 

R S MacKay 
Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick, Coventry 
CV4 7AL, UK 

Received 13 April 1987 

Abstract. In this letter it is proved that canton for area-preserving twist maps have dimension 
zero, only finitely many orbits of gaps, and gap widths go to zero exponentially in each 
orbit, if they are hyperbolic. 

Li and Bak (1986) observed numerically that cantori for area-preserving twist maps 
appear to have zero measure when projected onto the angle coordinate, and furthermore 
to have dimension zero. In appendix 2 of MacKay et al (1987), it was proved that all 
hyperbolic cantori have projected measure zero, based on ideas of Aubry et al (1982). 

In this letter it is proved that hyperbolic cantori have dimension zero (both Hausdorff 
dimension and capacity). Two proofs are given. In the first proof it is shown firstly 
that they have only finitely many orbits of gaps and secondly that the gap lengths go 
to zero exponentially in any orbit of gaps. Dimension zero follows from these results 
and the projected measure being zero and these results. The second proof is based 
on a general relation of Young (1982) between dimension, entropy and characteristic 
exponents of invariant measures for two-dimensional maps. Projected measure zero 
also follows directly from this. 

One interesting open question is: what is the dimension of the union of all cantori? 
For basic results on cantori and area-preserving twist maps, see Aubry and Le 

Daeron (1983) or MacKay and Stark (1985). 
The gaps in a cantorus come in orbits, which I will label by i. Denote the angle 

coordinates of the endpoints of the nth gap of the ith orbit by ( I : ,  r : ) .  Choose n = 0 
to correspond to a largest gap in each orbit. Let 

w; = r: - 1: and E: ,  = w:/ w; 

so 

E ; =  1 and O < E : , 4 1  for all n. 

Suppose there are infinitely many orbits of gaps. Then the sequence ( I ; ,  l i ,  E ; ) ,   EN, 
is bounded in R3/ T, identifying points under 

V l O , l I ,  ~ l ~ = ~ ~ o + ~ , ~ l + l , ~ l ~  

since floor(w) 4 1 ;  - 1;s ceil(w) (the integers below and above the rotation number w )  
and E :  E [0, 11.  Take a limit point (xo, xl, c l ) .  Generate the orbit (x,) from (xo, xl) .  
It lies on the cantorus as the cantorus is closed. Generate an orbit ( E , )  of tangent 
vectors to (x,) from ( s o ,  = 1. Now Z wb < 1, so wb+ 0. Thus since (xo, xI , E ~ )  

is a limit point of ( I ; ,  I;, E ; ) ,  given 7 > 0, N >  0, there exists i such that I E ,  - E L I  < 7, 
with 

0305-4470/87/090559 + 03$2.50 @ 1987 IOP Publishing Ltd L559 



L560 Letter to the Editor 

for all n with In1 < N .  Hence (E , )  is bounded in both directions in time, contradicting 
the assumption of hyperbolicity which would imply that every non-zero tangent orbit 
must grow in at least one direction of time. Thus hyperbolic cantori have only a finite 
number of orbits of gaps. 

For a hyperbolic cantorus, the gap widths go to zero exponentially in each orbit 
of gaps. This follows from a standard result on hyperbolic systems (e.g. theorem 6.2 
of Shub (1987)), namely, if A is a hyperbolic set for a diffeomorphismf; with contraction 
constant a < 1,  and the orbits of two points x, y E A converge together in forward time, 
then 

d ( f " x , f " y ) s a " d ( x , y )  for n > O  
in an adapted metric d. The orbits of the endpoints of any gap in a cantorus converge 
together, hence they converge together exponentially. 

Since the projected measure of a hyperbolic cantorus is zero and the gaps go to 
zero exponentially in each orbit of gaps at least like a" and there are only finitely 
many orbits of gaps, the projected measure remaining after removing the n largest 
gaps is at most Can, for some C. So one can cover al( M,) (where a l ( x ,  y )  = x and 
M ,  is the cantorus) with n intervals I i  of length Ca-". Thus for all s > O ,  the sum 

K , ( s )  = 1 IZils s na"". 
I 

So the Hausdodl dimension, which satisfies HD( al( M,)) s inf{s 3 0: K , (  s)  + 0 as 
n +CO},  is zero. 

Similarly, its capacity, defined by 

C = lim sup log N (  &)/log( 1/ E )  
E - 0  

where N(E)  is the minimum number of E balls needed to cover the set, satisfies 

log n 
C( al( M u ) )  =z lim sup 

n-m log l / ( C a " )  = O. 

M ,  is a Lipschitz graph over x, so has the same dimension and capacity as T , (  M,). 
This result can be derived much more simply from a general result of Young (1982), 

namely, given a C1+p, /3 > 0, diffeomorphism f of a surface with an ergodic invariant 
measure p then 

H D b )  = h,(f)( l /A,  + V I A 2 l )  

provided the right-hand side is not O/O, where 

H D ( ~ )  = inf HD( Y )  
, . ( Y ) = l  

is called the Hausdodl dimension of the measure, h,(f) is the entropy of (1; p )  and 
A l  3 A 2  are the characteristic exponents of (f; p ) .  

A cantorus M ,  supports a unique invariant measure p, and h,(f) = 0, since the 
motion is basically an irrational rotation (e.g. Walters 1982). Also by area preservation, 
A l + A z = O .  Thus if A 1 , A 2 # 0  then H D ( ~ ) = O .  But for all subsets Y 
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since it is a countable union. Since the invariant measure is unique, U f " Y  = M ,  for 
any set Y with p (  Y ) > O .  Thus HD(M,) = O .  

Incidentally, from this we can easily deduce that the Lebesgue measure A of the 
projection of M ,  is zero: HD(  M , )  = 0 implies HD( T,( M , ) )  = 0 implies A (  rI( M , ) )  = 0. 

Young also showed that the capacity of the measure, defined by 

C ( p )  =sup inf C( Y )  
6>0 , A ( Y ) ~ I - S  

is given by the same formula. From this we can deduce that M ,  has capacity zero, 
as follows. M ,  is the support of p so, given E > 0, there is a 6 > 0 such that p (  Y )  2 1 - 6 
implies that x is within E of Y for all X E  M,. Since C ( p )  =0, given d >0,  there is 
an E, and a subset Y with p (  Y )  2 1 - 6 which for all E < E,  can be covered by E" E 

balls; double the size of each ball to get a cover of M ,  by 2~ balls. Hence C( M , )  s d. 

I would like to thank Peter Veerman for listening to these ideas and encouraging me 
to write them up, David Rand for his comments, and for pointing out the paper of 
Young to me, as I knew only about the results of Ledrappier (1981) and Manning 
(1981) before, and Henri Epstein for discussions on hyperbolicity. 
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